X iv : m at h - ph / 0 41 00 07 v 1 3 O ct 2 00 4 Scattering by local deformations of a straight leaky wire

نویسندگان

  • P. Exner
  • S. Kondej
چکیده

We consider a model of a leaky quantum wire with the Hamiltonian −∆ − αδ(x − Γ) in L 2 (R 2), where Γ is a compact deformation of a straight line. The existence of wave operators is proven and the S-matrix is found for the negative part of the spectrum. Moreover, we conjecture that the scattering at negative energies becomes asymptot-ically purely one-dimensional, being determined by the local geometry in the leading order, if Γ is a smooth curve and α → ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 00 10 35 2 v 1 3 1 O ct 2 00 0 1 Q 2 evolution of parton distributions at small x

We investigate the Q 2 evolution of parton distributions at small x values, obtained in the case of flat initial conditions. The results are in excellent agreement with deep inelastic scattering experimental data from HERA.

متن کامل

ar X iv : m at h - ph / 0 41 00 13 v 1 4 O ct 2 00 4 Statistical Mechanics of Thermodynamic Processes ∗

In this note we describe some results concerning non-relativistic quantum systems at positive temperature and density confined to macroscopically large regions, Λ, of physical space R which are under the influence of some local, time-dependent external forces. We are interested in asymptotic properties of such systems, as Λ increases to all of R. It might thus appear natural Submitted for publi...

متن کامل

ar X iv : m at h - ph / 0 11 00 12 v 1 9 O ct 2 00 1 Functional Equations and Poincare Invariant Mechanical Systems

We study the following functional equation that has arisen in the context of mechanical systems invariant under the Poincaré algebra:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004